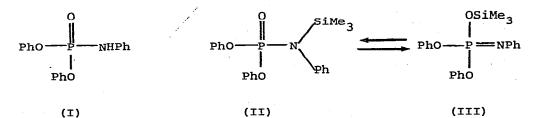
Journal of Organometallic Chemistry, 117 (1976) C63–C67 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary Communication

Reversible 1,3-Trimethylsilyl Migration Between Nitrogen and Oxygen in Trimethylsilylated N,0,0-Triphenylphosphoramidate

P.K.G. Hodgson, R. Katz, and G. Zon* Mid-Atlantic Research Institute, 7315 Wisconsin Avenue, Bethesda, Maryland 20014 (USA)

(Received May 25th, 1976)


Summary

Trimethylsilylated N,O,O-triphenylphosphoramidate has been synthesized and found by spectroscopic methods to exist as a mixture of 89% N- and 11% O-silylated isomers at 28° in α bromonaphthalene solvent. Variable temperature ¹H NMR experiments with this mixture afforded the first thermodynamic and kinetic parameters associated with 1,3-trimethylsilyl migration between nitrogen and oxygen in a phosphoramidate system with $\Delta \underline{G}_0 = 1.7$ kcal/mol (25°) and $\Delta \underline{G}^{\pm} \sim 21-27$ kcal/mol.

Dynamical characteristics of intramolecular 1,3-trimethylsilyl migration between nitrogen and oxygen, and between nitrogen and sulfur, in trimethylsilyl derivatives of amides¹ and thioamides,² respectively, have been studied in considerable detail. Comparative kinetic parameters for tautomerization in the known³ class of silylated phosphorus-containing analogs, <u>viz</u>. >P(0)-N<^{SiR3} \ddagger >P(OSiR₃)=N-, have not been heretofore available nor has this equilibrium been even detected; however, an estimation regarding the ground state enthalpy difference between such <u>N</u>- and <u>O</u>-silylated tautomers has been

*Address correspondence to this author care of Maloney Chemical Laboratory, The Catholic University of America, Washington, D.C. 20064 (USA). recently published.⁴ We therefore wish to report the first quantitative experimental evidence regarding both the thermodynamics and kinetics of silyl group exchange between nitrogen and oxygen in a trimethylsilylated phosphoramidate.

Reaction of $\underline{N}, \underline{O}, \underline{O}$ -triphenylphosphoramidate⁵ (I) with 50-fold molar excesses of chlorotrimethylsilane and triethylamine for 10 h. in refluxing anhydrous benzene gave, after removal of triethylamine hydrochloride and vacuum distillation, a 95% yield of the expected trimethylsilyl derivative as a somewhat hydrolytically unstable colorless oil (b.p. 105°/0.02 mm, $\underline{m/e} = 307$). The ¹H NMR spectrum (60 MHz, 28°) of this material featured Me₃Si singlet absorptions at δ (CCl₄, TMS) 0.22 and 0.07, which were present in a relative ratio of 89/11 and had a total intensity corresponding to 9H, by comparison with the aromatic proton absorption at 7.23 (apparent s, 15H). Assignment of these Me₃Si signals to major and minor isomers (II) (89%) and (III) (11%), respectively, was based on the following spectroscopic observations.

The IR spectrum of (II)/(III) revealed a strong P=0 stretching absorption at v(CHCl₃) 1194 cm⁻¹, which was of comparable intensity and similar frequency to that exhibited by (I) (1188 cm⁻¹). No absorption in the P=N region⁶ (1185-1325 cm⁻¹) was detectable; however, a N-Si stretch⁷ at 933 cm⁻¹ was present. A sample of (II)/(III) examined by ¹Hdecoupled ³¹p NMR (100 MHz, 30°) showed singlet absorptions at δ (CH₂Cl₂, external 85% H₃PO₄) - 5.2 and + 1.6 in a relative ratio of 89/11. The downfield chemical shift of the major resonance closely corresponds to that of (I) (δ - 6.5) and is therefore associated with (II), while the relatively upfield position of the weaker signal due to (III) is consistent with a rough estimate of the expected ³¹P chemical shift in this

C64

P=N tautomer.* Finally, it was found that addition of $Eu(fod)_3$ to either a carbon tetrachloride or benzene solution of (II)/(III) caused approximately 3-fold greater downfield-shifting of the major ¹H NMR Me₃Si singlet, relative to the minor Me₃Si singlet. Such an observation is consistent with these signals being respectively due to (II) and (III), given that a P=O group (as in (II)) is known⁸ to effectively compete with other lone-pair donor sites (as in (III)) for complexation with Eu(fod)₃.

Thermodynamic aspects of (II) \ddagger (III) were investigated in a-bromonaphthalene solvent by use of variable temperature ¹H NMR over a range of 28-129°. Careful measurement of relative Me3Si signal intensities obtained at different temperatures provided equilibrium constants (K) that yielded a linear plot of ln K vs. \underline{T}^{-1} , with $\Delta \underline{G}_0 = 1.7$ kcal/mol being the ground state free energy change for (II) \rightarrow (II_) at 25°. The relative population changes for (II)/(III) from 89/11 (28°) to 80/20 (129°) were reversible and reproducible. While this experimental ΔG_0 value is somewhat smaller than the enthalpy change of 7.2 kcal/mol estimated by Glidewell⁴ for N-silyl \rightarrow O-silyl tautomerization in a phosphoramidate, we have been unable to detect the O-trimethylsilyl tautomer of (Me₂CHO)₂P(O)NPh(SiMe₃), which implies less of a discrepancy between actual and estimated thermodynamic data in this diisopropyl system. It is also apparent that the substituents bonded to phosphorus, and presumably nitrogen, can detectably influence the magnitude of ΔG_0 in silvlated phosphoramidates.

Approximate lower and upper limiting values for free energies of activation for (II) \ddagger (III) were also obtained by ¹H NMR methods in α -bromonaphthalene solvent. Thus, our

^{*}Calculation of the ³¹P chemical shift to be expected for (III) on the basis of published data is difficult, owing to the scarcity of closely comparable P=N systems; however, N-benzoyland N-p-toluenesulfonyl-0,0,0-triphenylphosphorimidate respectively exhibit⁴ ³¹P resonances at δ +2.0 and +21.7. In this connection, we note that δ values of -5.9 and -6.8 have been reported⁴ for (Me₂CHO)₂P(O)NCH₂Ph(SiMe₃) and (Me₂CHO)₂P(O) NCH₂Ph(SiPh₃), respectively.

observation of sharp Me₃Si signals for (II) (80%) and (III) (20%) at 129° with $\Delta v = 12$ Hz indicates a minimum barrier height (ΔG^{\pm}) of ~ 21 kcal/mol for (III) \rightarrow (II).* On the other hand, an NMR sample of (II)/(III) thermally equilibrated at 22° required ~ 5 min. to re-equilibrate after insertion into the spectrometer probe that was pre-heated at 129°. If an equilibration half-life of ~ 1 min. is assumed, a value of $\Delta G^{\pm} \sim 27$ kcal/mol obtains. Since bulk heat transfer per se requires $\sim 2-3$ min., we believe that this latter estimate for ΔG^{\pm} represents a generous upper limit. Sample dilution by a factor of two had no measurable effect on the re-equilibration time and therefore militates against conceivable bimolecular Me₃Si exchange processes.

The approximate bracketing values for $\Delta \underline{G}^{\ddagger}$ (~ 21-27 kcal/ mol) of 1,3-trimethylsilyl migration in (II)/(III) are roughly comparable to those values measured in certain amide and thioamide analogs that exhibit relatively high barriers to 1,3trimethylsilyl shift, as compared to more typical values of ~ 10-20 kcal/mol.^{1,2} Results of our investigations of substituent effects on $\Delta \underline{G}_0$ and $\Delta \underline{G}^{\ddagger}$, as well as the study of stereochemistry at silicon during migration will be reported in the future.

Acknowledgements

This investigation was supported by NIH research grant number CA 18366, PHS/DHEW. We are especially grateful to Dr. William Egan (NIH) for suggesting the re-equilibration studies. We also thank Prof. Samuel O. Grim (U. Md.) for his help in obtaining ³¹P NMR spectra, and Ms. Loretta Weber for manuscript preparation.

*This minimum value simply derives from the assumption of signal coalescence for the unequally populated tautomers at 129° and application of appropriate dynamic NMR expressions (see footnote 23 in W. Egan, R. Tang, G. Zon, and K. Mislow, J. Amer. Chem. Soc., 93 (1971) 6205).

C66

<u>References</u>

1	M. Fukui, K. Itoh, and Y. Ishii, J. Chem. Soc. Perk. II,
	(1972), 1043; C.H. Yoder, W.C. Copenhafer, and B.
	DuBeshter, J. Amer. Chem. Soc., 96 (1974) 4283.
2	W. Walter and H.W. Lüke, Angew. Chem. Intern. Ed. Engl.,
	14 (1975) 427; W. Walter, H.W. Lüke, and J. Voβ, Justus
	Liebigs Ann. Chem., (1975) 1808.
3	M. Meyer zur Heyde, Tetrahedron Lett., (1969) 1425.
4	C. Glidewell, J. Organometal. Chem., 108 (1976) 335.
5	P.J. Bunyan and J.I.G. Cadogan, J. Chem. Soc., (1962) 1304.
6	L.C. Thomas, Interpretation of the Infrared Spectra of
	Organophosphorus Compounds, Heyden & Son, 1974.
7	L. Birkofer and N. Ramadan, Chem. Ber., 108 (1975) 3105.
8	Y. Yashman and O. Awerbouch, Tetrahedron, 27 (1971) 5593.

÷

C67

.